Mid-Term Security Architecture

Jan Filsinger **Chuck Pfleeger H.O.** Lubbes

17 July 1996

AGENDA

- Security Architecture Assumptions & Constraints
- Security Architecture
- Guard Functionality
- Guard Survey
- Next Steps

Security Architecture Assumptions

- Security within a federate and among its private data sources must be addressed by the individual federate.
- The RTI handles all data exchanged among and used by more than one federate.
- Sanitization rules are documented as part of the federation development process
- Classified information transmitted outside a protected security domain is encrypted
- Modeling and Simulation Resource Repository (MSRR) is not part of the run time HLA

Security Architecture Assumptions

- Need-to-know, release restrictions, handling caveats and the creation/deletion of special communities of interest are not addressed
- Integrity of data in transit will be assured by the RTI and communication mechanisms

Security Architecture Constraints

- Source/destination identifiers are not sensitive
 - a federate that subscribes to a data item is willing to receive data from any federate willing to publish it
 - a federate may be able to infer the source of a data item but knowledge of that source is not security-relevant
- Two-way guard is required to support information flow in both directions
- The guard and the RTI segments reside on a trusted platform
- All communications crossing security domains will go through a guard
- The architecture supports multiple security domains (there will be a practical limit that can be supported)

Security Architecture - Mid Term

- An RTI is instantiated with the security level used within the domain
- The guards mediate the transfer data and control services between security domains
 - All RTI services between domains pass through the guard
- To the RTI, the guard will appear to be a Federate
- To a federate, the guard will appear to be the RTI

Guard Functionality

High side Data from high side must be downgraded to pass to low **RTI-HIGH GUARD Process** Guard 'processes' RTI control services Sanitization (e.g., RTI Rules Initiated Services) **RTI- LOW** Low side Data on the low side passes through the guard to the RTI at the high side

Guard Survey: Candidate Guards

- Command and Control Guard (C2G)
- Radiant Mercury
- Generic Trusted Intermediary (GTI)

C2G

- Formerly WWMCCS Guard
- Supports fully automated high-to-low and low-tohigh transfers
- High assurance design; supported on high assurance platform (Wang/Honeywell XTS-300)
- Operational in U.S. Forces Korea

Radiant Mercury

- Designed for fully automatic high-to-low sanitization
- Message-oriented
- Based on Hewlett-Packard B1 HPBLS Unix platform
- Table-driven, reconfigurable sanitization; imagery sanitization under development
- Operational and accredited at several sites

GTI

- IR&D Effort of SAIC
- Operational at DARPA as Distributed Interactive Simulation (DIS) Guard
- Supports Secret to Unclassified information flow
- Based on Sun B1 CMW.
- Designed for ease of reconfiguration of security policy/sanitization rules
- System modular; modules reconfigurable for specific requirements

Guard Survey: Results

- Unlikely that COTS or GOTS guard will currently fit all HLA requirements
- Several promising GOTS products provide needed functionality, with high assurance, at reasonable cost
- Sample sanitization/releasability rules needed for more complete exploration of guard capabilities

